Common cathode triode amplifier
 Low cut-off frequency

common cathode amp stage with partially bypassed cathode

With :

- $\mathrm{ra}=$ internal resistance of the triode (cf Datasheet)
- $\mathrm{VA}=$ anode - cathode voltage
- $\mathrm{gm}=$ transconductance (cf Datasheet)
- $\mathrm{Zk}=$ complex impedance on the cathode ($\mathrm{Rk} / / \mathrm{Ck}$ - with Ck being a NOT perfect capacitance)
- RA load impedance on the anode
- $\mathrm{rg}=$ grid resistance held as infinite

The gain of the stage is :

$$
\begin{equation*}
A v=\frac{V s}{V e}=\frac{-\mu R A}{R A+r a+(\mu+1) Z k} \tag{1}
\end{equation*}
$$

This formula helps computing precisely the low cut-off frequency induced by the bypass capacitor Ck

In the bandwidth $\mathrm{Zk}=0$ and the gain is $\quad A v=\frac{-\mu R A}{R A+r a}$.
In fact $\mathbf{Z k}=\mathbf{R k} / / \mathbf{C k}=\frac{R k}{1+j C k R k \omega}$
We see that for $\omega=\infty \quad \mathrm{Zk}=0$ and the gain is maximum. The cut-off frequency is confirmed as a low frequency and the problem becomes how low the value of ω_{0} can be before the gain reaches the value of $\mathbf{A v}-\mathbf{3 d B}$?

In fact for a same value of Ve (Vin) we will reach tle low limit of the bandwidth when Vs (Vout) will be diminished by 3 dB , therefore at the cut-off $\quad V s c=\frac{V s}{\sqrt{2}}$.
For this it is sufficient that the magnitude of the denominator of (1) equals $\sqrt{2}(R A+r a)$.

At the cut-off frequency ω_{0} we have :

$$
\sqrt{2}(R A+r a)=\left|R A+r a+(\mu+1) \frac{R k}{1+j C k R k \quad \omega_{0}}\right|
$$

$$
\sqrt{2}=\frac{\left|R A+r a+(\mu+1) \frac{R k}{1+j C k R k \quad \omega_{0}}\right|}{|R A+r a|}
$$

multiplied high and low by $\mathbf{1 + j C k R k w 0}$ it yields :

$$
\begin{aligned}
& \sqrt{2}=\frac{\left|(R A+r a)\left(1+j C k R k \quad \omega_{0}\right)+(\mu+1) R k\right|}{\left|(R a+r a)\left(1+j C k R k \quad \omega_{0}\right)\right|} \\
& \sqrt{2}=\frac{\left|(R A+r a)+(\mu+1) R k+j(R A+r a) R k C k \quad \omega_{0}\right|}{\left|R A+r a+j(R A+r a) R k C k \quad \omega_{0}\right|}
\end{aligned}
$$

$$
\left.\sqrt{2}=\frac{\left\lvert\, 1+\frac{(\mu+1) R k}{R a+r a}+j R k C k\right.}{} \omega_{0} \right\rvert\,
$$

Dividing the magnitudes yields :

$$
\sqrt{2}=\frac{\sqrt{\left(1+\frac{(\mu+1) R k}{R a+r a)}\right)^{2}+R k^{2} C k^{2} \omega_{0}^{2}}}{\sqrt{1+R k^{2} C k^{2} \omega_{0}^{2}}}
$$

Squaring it all :

$$
\begin{gathered}
2+2 R k^{2} C k^{2} \omega_{0}^{2}=\left(1+\frac{(\mu+1) R k}{R a+r a)}\right)^{2}+R k^{2} C k^{2} \omega_{0}^{2} \\
2+R k^{2} C k^{2} \omega_{0^{2}=\left(1+\frac{(\mu+1) R k}{R a+r a)}\right)^{2}}^{R k^{2} C k^{2}}
\end{gathered}
$$

With $\omega_{0}=2 \pi \quad \mathrm{f}(\mathrm{Hz})$

$$
f_{(H z)}=\frac{1}{2 \pi R k C k} \sqrt{\left[1+\frac{(\mu+1) R k}{R A+r a}\right]^{2}-2}
$$

Of course if f is given, the value of the capacitance Ck can be found with the same formula, just reversing both.

